Przejdź do głównego menu Przejdź do sekcji głównej Przejdź do stopki

Artykuły

Tom 3 (2055)

Remedies to Thermal Radiation in Fused Silica Optical Fibers: Dodaje podtytuł

Przesłane
30 May 2023
Opublikowane
31-05-2023 — zaktualizowane 21-08-2024

Abstrakt

During a fire incident, optical fiber in a fire-resistant cable is usually exposed to temperatures 800°C to 1000°C. The hot fiber generates thermal (incandescent) radiation within narrowband spectrum, and is affected by broadband thermal radiation from glowing surroundings. The power of the second component, dgfgg initially negligible, increases with time due to rising number of fiber cracks and 

Bibliografia

  1. –, Standard EN 50200, “Method of test for resistance to fi re of
    Pokaż w Google Scholar
  2. unprotected small cables for use in emergency circuits”, (URL:
    Pokaż w Google Scholar
  3. https://standards.iteh.ai/catalog/standards/clc/873
    Pokaż w Google Scholar
  4. a9c45-a35b-4ec0-b0d3-ab1fcc792af4/en-50200-2015).
    Pokaż w Google Scholar
  5. –, Standard DIN 4102-12, “Fire behavior of building materials and
    Pokaż w Google Scholar
  6. elements – Part 12: Fire resistance of electric cable systems required to
    Pokaż w Google Scholar
  7. maintain circuit integrity – Requirements and testing”, (URL: https:
    Pokaż w Google Scholar
  8. //standards.globalspec.com/std/365477/din-4102-12).
    Pokaż w Google Scholar
  9. –, Standard EN 50582: “Procedure to assess the circuit integrity
    Pokaż w Google Scholar
  10. of optical fi bres in a cable under resistance to fi re testing”, (URL:
    Pokaż w Google Scholar
  11. https://standards.iteh.ai/catalog/standards/clc/740
    Pokaż w Google Scholar
  12. ddfd-5ea6-4eb0-83bd-feb5?f0e3f2/en-50582-2016).
    Pokaż w Google Scholar
  13. K. Borzycki, M. Jaworski, and T. Kossek, “Some eff ects of
    Pokaż w Google Scholar
  14. high temperature in fused silica optical fi bers”, J. Telecommu-
    Pokaż w Google Scholar
  15. nications and Inform. Technol., no. 3, pp. 56–71, 2021 (DOI:
    Pokaż w Google Scholar
  16. 26636/jtit.2021.153521).
    Pokaż w Google Scholar
  17. A.H. Rose and T.J. Bruno, “The observation of OH in annealed optical
    Pokaż w Google Scholar
  18. fi ber”, J. Non-Cryst. Solids, vol. 231, no. 3, pp. 280–285, 1998 (DOI:
    Pokaż w Google Scholar
  19. 1016/S0022-3093(98)00676-0).
    Pokaż w Google Scholar
  20. A.H. Rose, “Devitrifi cation in annealed optical fi ber”, J. Light-
    Pokaż w Google Scholar
  21. wave Technol., vol. 15, no. 5, pp. 808–814, 1997 (DOI:
    Pokaż w Google Scholar
  22. 1109/50.580819).
    Pokaż w Google Scholar
  23. OFS Fitel datasheet, Fiber-151, „50 µm graded-index OM2
    Pokaż w Google Scholar
  24. – bend-insensitive multimode optical fi ber”, 4/2018 (URL:
    Pokaż w Google Scholar
  25. https://fiber-optic-catalog.ofsoptics.com/docume
    Pokaż w Google Scholar
  26. nts/pdf/Graded-Index-50-BO-MMF-fiber-151-web.pdf).
    Pokaż w Google Scholar

JEL Classification

Collective Works (A3)
Mathematical and Quantitative Methods (C)
Single Equation Models • Single Variables (C2)
Asia including Middle East (N35)

##plugins.themes.immersion.displayStats.downloads##

##plugins.themes.immersion.displayStats.noStats##